US009312757B2 # (12) United States Patent # (45) **Date of Patent:** (10) Patent No.: # US 9,312,757 B2 Apr. 12, 2016 # (54) OUTPUT VOLTAGE ADJUSTABLE CHARGE PUMP (71) Applicant: eGalax_eMPIA Technology Inc., Taipei (TW) (72) Inventor: Po-Chuan Lin, Taipei (TW) (73) Assignee: EGALAX_EMPIA TECHNOLOGY INC., Taipei (TW) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 14/585,772 (22) Filed: Dec. 30, 2014 (65) **Prior Publication Data** US 2015/0188420 A1 Jul. 2, 2015 (30) Foreign Application Priority Data Dec. 31, 2013 (TW) 102149341 A (51) **Int. Cl.** *G05F 1/10* (2006.01) *G05F 3/02* (2006.01) H02M 3/07 (2006.01) # (58) Field of Classification Search ## (56) References Cited ## U.S. PATENT DOCUMENTS | 2007/0216620 | A1* | 9/2007 | Nagai et al. | 345/87 | |--------------|-----|---------|--------------|---------| | 2012/0249223 | A1* | 10/2012 | Neugebauer | 327/536 | ^{*} cited by examiner *Primary Examiner* — Quan Tra (74) Attorney, Agent, or Firm — Muncy, Geissler, Olds & Lowe, P.C. # (57) ABSTRACT A charge pump that uses a control unit of a chip to adjust the on/off status of power switches and capacitor boost switches of a change-over switch set, enabling input voltage to be boosted by selected capacitors to the desired voltage level subject to conduction and cutoff of selected transistors, and therefore a predetermined voltage level of output voltage can be provided to an internal working circuit of an electronic apparatus without changing the circuit layout of the chip and the package substrate that is packaged on the chip, and thus, the chip and the package substrate simply need to be verified once, eliminating further verification procedure and time prior to vending and saving much the cost. # 4 Claims, 5 Drawing Sheets T. SIE F.C.5 FIG. 3 PRIOR ART PRIOR ART FIG.5 1 # OUTPUT VOLTAGE ADJUSTABLE CHARGE PUMP This application claims the priority benefit of Taiwan patent application number 102149341, filed on Dec. 31, 5 2013. ## BACKGROUND OF THE INVENTION #### 1. Field of the Invention The present invention relates to charge pump technology, and more particularly, to an output voltage adjustable charge pump for amplifying an input voltage to provide the desired output voltage. #### 2. Description of the Related Art In a notebook computer, tablet computer, smart phone or any other electronic apparatus, an IC with charge pump is generally used for amplifying the input voltage to provide a high level of output voltage for the working of an internal working circuit. FIG. 4 illustrates a charge pump according to the prior art. According to this design, the charge pump comprises a chip A1 and a package substrate A2 packaged on the chip A1. The chip A1 comprises a clock generator A11 and 1^{st} through 9^{th} transistors $M_1{\sim}M_9$. The clock generator A11 is capable of generating a first clock pulse CK1 and a reversed second clock pulse CK2. When at the high voltage level, the first clock pulse CK1 and the second clock pulse CK2 have the voltage of V_{DD} . When at the low voltage level, the first clock pulse CK1 and the second clock pulse CK2 have zero volt. Further, the 1^{st} through 9^{th} transistors $M_1{\sim}M_9$ have a threshold voltage V_t . The charge pump is used in a circuit board A3 that comprises an input voltage V_{in} of voltage level V_{DD} , 1^{st} through 8^{th} capacitors $C_1{\sim}C_8$, and a voltage stabilizer capacitor C_{ext} . During charging period for the 1^{st} capacitor C_1 , the first clock pulse CK1 and the second clock pulse CK2 are respectively at the low voltage level and the high voltage level, and therefore the even number transistors M_2 , M_4 , M_6 and M_8 are cut off, and the odd number transistors M_1 , M_3 , M_5 , M_7 and M_9 are conducted. At this time, the V_{DD} input voltage V_{in} is transmitted through the 1^{st} transistor M1 to produce a threshold V_t voltage drop, a voltage of V_{DD} – V_t is produced at one end of the 1^{st} capacitor C_1 , and the other end of the 1^{st} capacitor C_1 receives zero volt from the first clock pulse CK1, and thus the 1^{st} capacitor C_1 is charged to the voltage level of V_{DD} – V_t . During boosting period for the 1^{st} capacitor C_1 , the first 50 clock pulse CK1 and the second clock pulse CK2 are respectively at the high voltage level and the low voltage level, therefore the odd number transistors M_1 , M_3 , M_5 , M_7 and M_9 are cut off, and the even number transistors M_2 , M_4 , M_6 and M_8 are conducted. At this time, one end of the 1^{st} capacitor C_1 55 receives the voltage of V_{DD} from the first clock pulse CK1. Because the 1^{st} capacitor C_1 has stored therein voltage of V_{DD} – V_t , the other end of the 1^{st} capacitor C_1 has a voltage of $2V_{DD}$ – V_t that is transmitted through the 2^{nd} transistor M_2 to produce a threshold V_t voltage drop, and a voltage of $2\times(V_{DD}-V_t)$ is produced at one end of the 2^{nd} capacitor C_2 , and the other end of the 2^{nd} capacitor C_2 receives the voltage of zero volt from the second clock pulse CK2, and therefore the 2^{nd} capacitor C_2 is charged to $2\times(V_{DD}-V_t)$. Subject to the aforesaid manner, the voltages of capacitors 65 $C_3 \sim C_8$ can be regulated, enabling the emitter of the 9^{th} transistor M_9 to provide an output voltage V_{out} of $9 \times (V_{DD} - V_t)$ 2 that is then stabilized by the voltage stabilizer capacitor C_{ext} and then outputted to the internal working circuit A4 of the electronic apparatus. However, from the circuit diagram of the prior art design shown in FIG. 5, it can be seen that if the desired working voltage for the working circuit A4 is $5 \times (V_{DD} - V_t)$, the chip A1 must have 1st through 5th transistors M₁~M₅ built therein to match with 1^{st} through 4^{th} capacitors $C_1 \sim C_4$ of the circuit board A3 for generating $5 \times (V_{DD} - V_t)$ output voltage, i.e., a different chip A1 of a different specification must be used with the circuit board A3 for generating a different working voltage, for example, 1^{st} through 9^{th} transistors $M_1 \sim M_9$ of the chip A1 are used to match with 1st through 8th capacitors $C_1 \sim C_8$ of the circuit board A3 for generating $9 \times (V_{DD} - V_t)$ output voltage, or 1^{st} through 5^{th} transistors $M_1 \sim M_5$ of the chip A1 are used to match with 1st through 4th capacitors $C_1 \sim C_4$ of the circuit board A3 for generating $5 \times (V_{DD} - V_t)$ output voltage. Therefore, one specification of prior art charge pump can simply provide one output voltage V_{out} for the working circuit A4 of the electronic apparatus. When intending to use the charge pump in a different electronic apparatus that requires a different working voltage, the internal circuit layout of the chip A1 and the wiring of the package substrate A2 must be relatively modified. Before vending of different specifications of chips A1, these chips A1 must be verified individually through an IC verification process before acceptance. The verification must be performed on the chip A1 as well as the package substrate A2. If the circuit design of the chip A1 or the wiring between the chip A1 and the package substrate A2 is changed, a new verification must be performed. Thus, preparing multiple chips A1 of different specifications for different applications to meet different requirements for providing different output voltages requires multiple verification procedures and long operating time, increasing the cost. Therefore, it is desirable to provide a charge pump that eliminates the drawbacks of the aforesaid prior art design. ## SUMMARY OF THE INVENTION The present invention has been accomplished under the circumstances in view. It is therefore the main object of the present invention to provide a charge pump for amplifying an input voltage to provide the desired output voltage, which simply needs the chip and the package substrate simply to be verified once, eliminating further verification procedure and operating time prior to vending. To achieve this and other objects of the present invention, a charge pump of the invention comprises a chip comprising a clock generator, a first clock terminal, a second clock terminal, a transistor set, a change-over switch set, a control unit, an input terminal set and an output terminal, and a package substrate comprising a first clock pin, a second clock pin, an external pin set and a power output pin and packaged on the chip. The control unit of the chip controls On/Off status of the power switches and capacitor boost switches of the change-over switch set, enabling the input voltage to be boosted to the desired voltage level subject to conduction and cutoff of selected transistors, and thus the desired voltage level of output voltage can be obtained and provided to a working circuit. # BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a chip for charge pump in accordance with the present invention. 3 FIG. 2 is a schematic drawing illustrating an applied status of the charge pump in accordance with the present invention. FIG. 3 is a circuit diagram of the charge pump in accordance with the present invention. FIG. 4 is a circuit diagram of a charge pump according to 5 the prior art (I). FIG. 5 is a circuit diagram of a charge pump according to the prior art (II). ## DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENT** In the following description, the terminology of "first", "second", $(X-1)^{th}$, X^{th} , $(Y-1)^{th}$ and Y^{th} are adapted for indentifying the indicated components, for example, the first tran- 15 sistor M_1 , second transistor M_2 , $(X-1)^{th}$ transistor M_{x-1} and X^{th} transistor M_x of the transistor set 14 and the $(Y-1)^{th}$ capacitor C_{Y-1} and Y^{th} capacitor C_Y of the capacitor set 31, but not intended to limit the scope of the present invention. Referring to FIGS. 1 and 2, a charge pump in accordance 20 with the present invention is shown. The charge pump comprises a chip 1, and a package substrate 2. The chip 1 comprises a clock generator 11, a first clock terminal 12, a second clock terminal 13, a transistor set 14, a change-over switch set 15, a control unit 16, an input terminal 25 set 17, and an output terminal 18. The clock generator 11 of the chip 1 is electrically coupled with the first clock terminal 12 and the second clock terminal 13, and adapted for generating a first clock pulse CK1 through the first clock terminal 12 and a reversed second clock pulse 30 CK2 through the second clock terminal 13. The first clock pulse CK1 and the second clock pulse CK2 have the voltage of \mathbf{V}_{DD} when at high voltage level, or zero volt when at low voltage level. The transistor set 14 comprises a first transistor M₁, a 35 second transistor M_2 , a third transistor M_3 , a fourth transistor M₄, a fifth transistor M₅, a sixth transistor M₆, a seventh transistor M₇, an eighth transistor M₈ and a ninth transistor The change-over switch set 15 comprises a first power 40 switch S_1 , a second power switch S_2 , a third power switch S_3 , a fourth power switch S₄, a fifth power switch S₅, a sixth power switch S_6 , a seventh power switch S_7 , an eighth power switch S8, a first capacitor boost switch U1, a second capacitor boost switch U2, a third capacitor boost switch U3, a fourth 45 capacitor boost switch U₄, a fifth capacitor boost switch U₅, a sixth capacitor boost switch U₆, and a seventh capacitor boost switch U₇. The input terminal set 17 comprises a first input terminal I_1 , a second input terminal I₂, a third input terminal I₃, a fourth 50 input terminal I₄, a fifth input terminal I₅, a sixth input terminal I₆, a seventh input terminal I₇, an eighth input terminal I₈, and a ninth input terminal I₉. The collectors of the transistors $M_1 \sim M_9$ of the transistor set respective bases thereof; the emitters of the 1st through 8th transistors M₁~M₈ are respectively electrically connected to the junctions between the collectors and bases of the 2^{nd} through 9^{th} transistors $M_2 \sim M_9$; the junctions between the collectors and bases of the 1^{st} through 8^{th} transistors $M_1 \sim M_8$ 60 are respectively electrically connected to the respective one ends of the 1^{st} through 8^{th} power switches $S_1 \sim S_8$ of the change-over switch set 15, and the control unit 16 is also electrically coupled with the same respective one ends of the 1^{st} through 8^{th} power switches $S_1 \sim S_8$; the respective other 65 ends of the 1st through 8th power switches $S_1 \sim S_8$ are electrically connected to the first input terminal I₁; the junctions between the collectors and bases of the 2nd through 8th transistors M₂~M₈ are respectively electrically connected to the respective one ends of the 1st through 7th capacitor boost switches U₁~U₇; the control unit 16 is also electrically coupled with the same respective one ends of the 1st through 7^{th} capacitor boost switches $U_1 \sim U_7$; the respective other ends of the 1^{st} through 7^{th} capacitor boost switches $U_1 \sim U_7$ are respectively electrically connected to the 2nd through 8th input terminals $I_2 \sim I_8$; the junctions between the collector and base of the ninth transistor M_o is electrically connected to the ninth input terminal I₉; the emitter of the ninth input terminal I₉ is electrically connected to the output terminal 18. Further, the 1st through 9th transistors M₁~M₉ each have a respective threshold voltage V_t. The package substrate 2 comprises a first clock pin 21, a second clock pin 22, an external pin set 23, and a power output pin 24. The external pin set 23 comprises a 1^{st} external pin O_1 , a 2^{nd} external pin O_2 , a 3^{rd} external pin O_3 , a 4^{th} external pin O_4 , a 5th external pin O_5 , a 6th external pin O_6 , a 7th external pin O_7 , an 8^{th} external pin O_8 , and a 9^{th} external pin O_9 . Referring to FIG. 2 again, the chip 1 is packaged in the package substrate 2 that is mounted at a circuit board 3 in an electronic apparatus (such as tablet computer, notebook computer, etc.). The circuit board 3 has a V_{DD} input voltage V_{in} (same voltage level as the first clock pulse and the second clock pulse), a capacitor set 31 and a voltage stabilizer capaci-The capacitor set 31 comprises a 1^{st} capacitor C_1 , a 2^{nd} capacitor C_2 , a 3^{rd} capacitor C_3 , a 4^{th} capacitor C_4 , a 5^{th} capacitor C_5 , a 6^{th} capacitor C_6 , a 7^{th} capacitor C_7 , and an 8^{th} capacitor C₈. During installation of the present invention, respectively electrically connect the first clock terminal 12 and second clock terminal 13 of the chip 1 to the first clock pin 21 and second clock pin 22 of the package substrate 2, and then respectively electrically connect the input terminals I₁~I₉ of the chip 1 to the external pins $O_1 \sim O_9$ of the package substrate 2, and then electrically connect the first external pin O₁ to the input voltage V_{in} of the circuit board 3, and then respectively electrically connect 2^{nd} through 9^{th} external pins $O_2 \sim O_9$ of the package substrate 2 to the respective one ends of the 1st through 8^{th} capacitors $C_1 \sim C_8$ of the capacitor set 31, and then electrically and alternatively connect the respective other ends of the 1^{st} through 8^{th} capacitors $C_1 \sim C_8$ of the capacitor set 31 to the first clock pin 21 and second clock pin 22 of the package substrate 2, i.e., electrically connect the odd number capacitors C1, C3, C5, C7 and C9 to the first clock pin 21 and the even number capacitors C2, C4, C6 and C8 to the second clock pin 22, and then electrically connect the power output pin 24 of the package substrate 2 to a working circuit 4 and one end of the voltage stabilizer capacitor C_{ext} of the circuit board 3, and then electrically connect the other end of the voltage stabilizer capacitor C_{ext} of the circuit board 3 to Further, the control unit 16 in the chip 1 adjusts the status 14 of the chip 1 are respectively electrically connected to the 55 of the input terminal set 17 subject to the working voltage required by the working circuit 4, for example, if the working voltage of the working circuit 4 is $5 \times (V_{DD} - V_t)$, the control unit 16 will turn on the 5th power switch S_5 and 5th through 7th capacitor boost switches $\hat{U}_5 \sim U_7$, enabling the input voltage V_{in} , to be boosted by 5th through 8th capacitors C_5 - C_8 subject to conduction and cutoff of the 5th through 9th transistors $M_5 \sim M_9$, and thereby producing $5 \times (V_{DD} - V_t)$ output voltage V_{out} . At this time, the other power switches $S_1 \sim S_4$ and $S_6 \sim S_8$ and 1^{st} through 4^{th} capacitor boost switches $U_1 \sim U_4$ are in the open-circuit status, and therefore the 1^{st} through 4^{th} transistors $M_1 \sim M_4$ and the 1st through 4th capacitors $C_1 \sim C_4$ are not in use when boosting the input voltage V_{in} . In the below- described example, the 5th power switch S_5 and the 5th through 7th capacitor boost switches $U_5 \sim U_7$ are electrically conducted for producing $5 \times (V_{DD} - V_t)$ output voltage V_{out} . In detail, during charging of the 5^{th} capacitor C_5 , the first clock pulse CK1 is at the low voltage level and the second 5 clock pulse CK2 is at the high voltage level, therefore, the 6^{th} transistor M_6 and 8^{th} transistor M_8 are electrically disconducted and the 5^{th} transistor M_5 , 7^{th} transistor M_7 and 9^{th} transistor M_9 are electrically conducted. At this time, the V_{DD} input voltage V_{in} is conducted through the 5^{th} power switch S_5 10 to the 5^{th} transistor M_5 to produce a threshold V_t voltage drop, and also conducted to the 5^{th} capacitor boost switch U_5 at one end of the 5^{th} capacitor C_5 to form a voltage of $(V_{DD}-V_t)$ while the other end of the 5^{th} capacitor C_5 receives zero volt from the first clock pulse CK1, and thus the 5^{th} capacitor C_5 is 15 charged to the voltage level of $(V_{DD}-V_t)$. During boosting of the 5^{th} capacitor C_5 after the 5^{th} capacitor C_5 has been charged to the voltage level of $(V_{DD}-V_t)$, the clock pulse CK1 is at the high voltage level and the second clock pulse CK2 is at the low voltage level, therefore, the 5th transistor M_5 , 7^{th} transistor M_7 and 9^{th} transistor M_9 are electrically disconducted and the 6th transistor M₆ and 8th transistor M₈ are electrically conducted. At this time, one end of the 5^{th} capacitor C_5 receives the V_{DD} volt from the first clock pulse CK1. Because the 5^{th} capacitor C_5 has stored therein the 25 voltage of $(V_{DD}-V_t)$, the other end the 5th capacitor C_5 has a voltage of $(2V_{DD}-V_t)$. Therefore, the voltage of $(2V_{DD}-V_t)$ at the other end the 5^{th} capacitor C_5 is conducted through the 5^{th} capacitor boost switch U_5 to the 6^{th} transistor M_6 to produce a threshold V, voltage drop, and also conducted to the 6th capacitor boost switch U₆ at one end of the 6th capacitor C₆ to form a voltage of $2 \times (V_{DD} - V_t)$ while the other end of the 6^{th} capacitor C₆ receives zero volt from the second clock pulse CK2, and thus the 6^{th} capacitor C_6 is charged to the voltage level of $2 \times (V_{DD} - V_t)$. Regulation of the voltage of the 7^{th} capacitor C_7 and 8^{th} capacitor C_8 can be achieved subject to the aforesaid procedure, i.e., the storage voltages in the 5^{th} capacitor C_5 , 6^{th} capacitor C_6 , 7^{th} capacitor C_7 and 8^{th} capacitor C_8 are multiplied to the voltage levels of $(V_{DD}-V_t)$, $2\times(V_{DD}-V_t)$, 40 $3\times(V_{DD}-V_t)$ and $4\times(V_{DD}-V_t)$, and then an output voltage V_{out} at the voltage level of $5\times(V_{DD}-V_t)$ is produced at the power output pin **24** of the package substrate **2** and then stabilized through the voltage stabilizer capacitor C_{ext} and then outputted to the working circuit **4** for working. In the above-described example, the control unit **16** conducts the 5^{th} power switch S_5 and the 5^{th} through 7^{th} capacitor boost switches $U_5 \sim U_7$ for enabling the input voltage V_{in} to be multiplied at the 5^{th} through 8^{th} capacitor $C_5 \sim C_8$ to produce $5 \times (V_{DD} - V_t)$ output voltage V_{out} subject to conduction and 50 cutoff of the 5^{th} transistor M_5 through 9^{th} transistor M_9 . Therefore, it can further know the control unit **16** can minimumly adjust the status of each switch of the change-over switch set **15**, for example, simply conduct the 8^{th} capacitor C_8 , to let the input voltage V_{in} be boosted by the 8^{th} capacitor C_8 so as to obtain $2 \times (V_{DD} - V_t)$ output voltage V_{out} , or alternatively, the control unit **16** can maximumly conduct the 1^{st} power switch S_1 and the 1^{st} through 8^{th} capacitor boost switches $U_1 \sim U_8$ to let the input voltage V_{in} be boosted by the 1^{st} through 8^{th} capacitors $C_1 \sim C_8$ so as to obtain $9 \times (V_{DD} - V_t)$ 60 output voltage V_{out} . Therefore, the chip **1** supports the output voltage V_{out} in the range of $2 \times (V_{DD} - V_t) \sim 9 \times (V_{DD} - V_t)$. Referring to FIG. 3, in actual application, the number of the transistors can be adjusted to fit different requirements and is not limited to 9, and the transistor set 14 and input terminal set 17 of the chip 1 can be respectively configured to provide N transistors and N input terminals, wherein $N \ge 4$. Further, the change-over switch set 15 comprises (N-1) power switches and (N-2) capacitor boost switches; the collectors of the transistors M₁~M_N are respectively electrically connected to the respective bases; the emitters of 1^{st} through $(N-1)^{th}$ transistors $M_1 \sim M_{N-1}$ are respectively electrically connected to the junctions between the collectors and bases of the 2^{nd} through N^{th} transistors $M_2 \sim M_N$; the junctions between the collectors and bases of the 1st through $(N-1)^{th}$ transistors $M_1 \sim M_{N-1}$ are respectively electrically connected to respective one ends of the first through $(N-1)^{th}$ power switches $\hat{S}_1 \sim \hat{S}_{N-1}$; the control unit 16 is electrically coupled with the respective same one ends of the first through $(\bar{N}-1)^{th}$ power switches $S_1 \sim S_{N-1}$; the respective other ends of the 1st through (N-1)th power switches $S_1 \sim S_{N-1}$ are respectively electrically connected to the first input terminal I_1 ; the junctions between the collectors and bases of the 2^{nd} through $(N-1)^{th}$ transistors $M_2 \sim M_{N-1}$ are respectively electrically connected to respective one ends of the 1st through $(N-2)^{th}$ capacitor boost switches $U_1 \sim U_{N-2}$; the control unit 16 is electrically coupled with the respective same one ends of the 1^{st} through $(N-2)^{th}$ capacitor boost switches $U_1 \sim U_{N-2}$; the respective other ends of the 1st through $(N-2)^{th}$ capacitor boost switches $U_1 \sim U_{N-2}$ are respectively electrically connected to the 2^{nd} through $(N-1)^{th}$ input terminal $I_2 \sim I_{N-1}$; the junction between the collector and base of the N^{th} transistor M_N is electrically connected to the N^{th} input terminal I_N ; the emitter of the N^{th} transistor M_N is electrically connected to the output terminal 18. In actual application, the 1^{st} through N^{th} input terminals $I_1 \sim I_N$ of the chip $\mathbf{1}$ are respectively electrically connected to the 1^{st} through N^{th} external pins $O_1 \sim O_N$ of the external pin set $\mathbf{23}$ of the package substrate $\mathbf{2}$; the 1^{st} external pin O_1 is electrically connected to the input voltage V_{in} of the circuit board $\mathbf{3}$; 2^{nd} through N^{th} external pins $O_2 \sim O_N$ of the external pin set $\mathbf{23}$ of the package substrate $\mathbf{2}$ are respectively electrically connected to the respective one ends of the 1^{st} through $(N-1)^{th}$ capacitors $C_1 \sim C_{N-1}$ of the circuit board $\mathbf{3}$; the respective other ends of the 1^{st} through $(N-1)^{th}$ capacitors $C_1 \sim C_{N-1}$ of the circuit board $\mathbf{3}$ are respectively alternatively connected to the first clock pin $\mathbf{21}$ and the second clock pin $\mathbf{22}$, i.e., the odd number capacitors C_1 , C_3 etc. are electrically connected to the first clock pin $\mathbf{21}$ and the even number capacitors C_1 , C_3 etc. are electrically connected to the second clock pin $\mathbf{22}$. From the above-described preferred embodiment of the present invention, we can know that, if the working circuit 4 45 requires the working voltage of $2\times(V_{DD}-V_t)$, the control unit 16 conducts the $(N-1)^{th}$ power switch S_{N-1} , enabling V_{DD} input voltage V_{in} to be boosted by the $(N-1)^{th}$ capacitor C_{N-1} , and thus, $2 \times (V_{DD} - V_t)$ output voltage V_{out} is obtained; if the working circuit 4 requires the working voltage of $5\times(V_{DD}$ V_t), the control unit 16 conducts the $(N-4)^{th}$ power switch S_{N-4} and the $(N-4)^{th}$ through $(N-2)^{th}$ capacitor boost switches $U_{N-4} \sim U_{N-2}$, enabling V_{DD} input voltage V_{in} to be boosted by the $(N-4)^{th}$ through $(N-1)^{th}$ capacitors $C_{N-4} \sim C_{N-1}$, and thus, $5 \times (V_{DD} - V_t)$ output voltage V_{out} is obtained; if the working circuit 4 requires the working voltage of $N\times(V_{DD}-V_t)$, the control unit 16 conducts the 1^{st} power switch S_1 and the 1^{st} through $(N-2)^{th}$ capacitor boost switches $U_1 \sim U_{N-2}$, enabling V_{DD} input voltage V_{in} to be boosted by the 1st through $(N-1)^{th}$ capacitors $C_1 \sim C_{N-1}$, and thus, $N \times (V_{DD} - V_t)$ output voltage V_{out} is obtained. Thus, controlling the control unit 16 to adjust the status of the change-over switch set 17 can provide the desired output voltage Vout for the working of the working As stated above, the output voltage adjustable charge pump of the present invention uses the control unit ${\bf 16}$ in the chip ${\bf 1}$ to adjust the on/off status of the power switches $S_1 \sim S_{N-1}$ and capacitor boost switches $U_1 \sim U_{N-2}$ of the change-over switch 8 set 15, enabling the input voltage V_{in} to be boosted by selected capacitors to the desired voltage level subject to conduction and cutoff of selected transistors, and therefore a predetermined voltage level of output voltage V_{out} can be provided to the internal working circuit 4 of any of a variety of predetermined electronic apparatuses without changing the circuit layout of the chip 1 and the package substrate 2. Further, the chip 1 and the package substrate 2 simply need to be verified once, eliminating further verification procedure and operating time prior to vending, and therefore the invention greatly saves the cost. In general, the invention provides a charge pump, which comprises a chip 1 comprising a clock generator 11, a first clock terminal 12, a second clock terminal 13, a transistor set 14, a change-over switch set 15, a control unit 16, an input 15 terminal set 17 and an output terminal 18, and a package substrate 2 comprising a first clock pin 21, a second clock pin 22, an external pin set 23 and a power output pin 24 and packaged on the chip 1, wherein the control unit 16 of the chip 1 controls On/Off status of the power switches $S_1 \sim S_{N-1}$ and 20 capacitor boost switches $U_1 \sim U_{N-2}$ of the change-over switch set 15, enabling the input voltage V_m to be boosted to the desired voltage level subject to conduction and cutoff of selected transistors, and thus the desired voltage level of output voltage V_{out} can be obtained and provided to a working 25 circuit 4 Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims. What the invention claimed is: 1. A charge pump, comprising a chip and a package substrate packaged on said chip and installed in a circuit board 35 comprising an input voltage, N-1 capacitors and a voltage stabilizer capacitor, the capacitors of said circuit board being adapted for storing and boosting said input voltage to provide an output voltage, wherein said chip comprises: - a clock generator for generating a first clock pulse and a reversed second clock pulse; - a first clock terminal electrically connected to said clock generator for receiving said first clock pulse; - a second clock terminal electrically connected to said 45 clock generator for receiving said second clock pulse; - a transistor set comprising N transistors numbered 1st through Nth, said N being ≥4, the collectors of said transistors being respectively electrically connected to the respective bases thereof, the emitters of 1st 50 through N-1 transistors being respectively electrically connected to the junctions between the collectors and bases of the 2nd through Nth transistors; - a change-over switch set comprising N-1 power switches and N-2 capacitor boost switches, respective one ends of the 1st through (N-1)th power switches being respectively electrically connected to junctions between the collectors and bases of the 1^{st} through $(N-1)^{th}$ transistors, respective one ends of the 1^{st} through $(N-2)^{th}$ capacitor boost switches being respectively electrically connected to junctions between the collectors and bases of the 2^{nd} through $(N-1)^{th}$ transistors; - a control unit electrically connected to respective one ends of the 1st through (N-1)th power switches and respective one ends of the 1st through (N-2)th capacitor boost switches; - an input terminal set comprising N input terminals numbered from the 1st through Nth, the first input terminal being electrically connected to respective opposite ends of the 1st through (N-1)th power switches, the 2nd through (N-1)th input terminals being respectively electrically connected to respective opposite ends of the 1st through (N-2)th capacitor boost switches, the Nth input terminal being electrically connected to the junction between the collector and base of the Nth transistor; and - an output terminal electrically connected to the emitter of the N^{th} transistor; said package substrate comprises: - a first clock pin electrically connected to said first clock terminal and electrically connected to respective one ends of odd number capacitors of said circuit board; - a second clock pin electrically connected to said second clock terminal and electrically connected to respective one ends of even number capacitors of said circuit board: - an external pin set comprising N external pins numbered from 1st through Nth, the 1st external pin being electrically connected to said first input terminal and said input voltage, the 2nd through Nth external pins being respectively electrically connected to 2nd through Nth input terminals and respective opposite ends of the 1st through (N-1)th capacitors; and - a power output pin electrically connected to said output terminal of said chip. - 2. The charge pump as claimed in claim 1, wherein the power output pin of said package substrate is electrically connected to one end of said voltage stabilizer capacitor of said circuit board, and said voltage stabilizer capacitor has an opposite end thereof grounded. - 3. The charge pump as claimed in claim 1, wherein the first clock pulse and second clock pulse generated by said clock generator when at a high voltage level have the same voltage level as the voltage level of said input voltage. - 4. The charge pump as claimed in claim 1, wherein the first clock pulse and second clock pulse generated by said clock generator have zero volt when at a low voltage level. * * * * *